高数期末
曲率(参数 \(t\) 定义的三维曲线)公式 $$ \kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3} $$
其在二维的特例 \(r(t) = (r \cos t, r \sin t, 0)\),代入即可得 \(\frac{1}{r}\)。
这个 test 可能要记一下。
Theorem: Second Partials Test
Suppose that \(f(x,y)\) has continuous second partial derivatives in a neighborhood of \((x_0,y_0)\) and that \(\nabla f(x_0,y_0)=0\). Let
$$ D=D(x_0,y_0)=f_{xx}(x_0,y_0)f_{yy}(x_0,y_0)-f_{xy}^2(x_0,y_0) $$ Then:
- If \(D>0\) and \(f_{xx}(x_0,y_0)<0\), then \(f(x_0,y_0)\) is a local maximum value.
- If \(D>0\) and \(f_{xx}(x_0,y_0)>0\), then \(f(x_0,y_0)\) is a local minimum value.
- If \(D<0\), then \(f(x_0,y_0)\) is not an extreme value (i.e., \((x_0,y_0)\) is a saddle point).
- If \(D=0\), then the test is inconclusive.
往届考题选做¶
Problem 22 (4 points)¶
Let \(f(x,y)\) be continuous on its domain, and
$$
f(x,y) = e^{x^2+y^2} + xy \iint_D xy \, f(x,y) dA
$$
where \(D = {(x, y) : 0 \leq x \leq 1,: 0 \leq y \leq 1}\). Find \(f(x,y)\).
和高数1一个套路,后面那串积分是个定值,设其为 \(C\) 得到 \(f(x,y)\),然后代回这个积分,从而得到关于 \(C\) 的方程,解出即可。
Problem 21 (11 points)¶
Assume that \(\mathbf{F}(x, y) = (2xy + y)\mathbf{i} + (x^2 + x + 1)\mathbf{j}\).
(1) (3 points) Show that \(\mathbf{F}(x,y)\) is conservative.
conservative 大概是说其在任意闭曲线上的积分为 \(0\)。由 Green 公式,即 $$ \nabla \times F \equiv 0 $$ 简单计算即可
(2) (4 points) Find \(f\) such that \(\mathbf{F} = \nabla f\).
先从 \(f_x\) 反推出待定一个 \(C(y)\) 的 \(f\),然后再考虑 \(f_y\) 求出 \(C(y)\)。
(3) (4 points) Calculate \(\int_C (2xy + y) dx + (x^2 + x + 1) dy\), where \(C\) is any path from (0,0) to (2,1).
其等于二问中 \(f(2,1) - f(0,0)\)。
Problem 20¶
Evaluate \(\iint_G xyz ds\), where \(G\) is the part of the plane \(z = 2x + 3y\) above the triangular region with vertices (0,0,0), (1,0,0) and (1,1,0).
把 \(ds\) 投影到 xy 平面内 $$ \sqrt{z_x^2+z_y^2+1}dxdy $$ 即可。
Problem 19¶
Calculate \(\oint_C 2y dx - 2x dy\), where \(C\) is the boundary of the triangle with vertices (0,0), (2,1) and (0,1).
套 Green 公式即转化为求三角形面积乘一个常数。